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A cavitating-flow calculation method is presented, based on the panel technique with 
minimization of a certain vector characterizing the discretion error which may 
become important under cavitating conditions. Several practical examples are 
presented : partial cavitation on an isolated foil, cavitation behind a blunt-ended 
body, and the problem of two cavities around an axisymmetrical body. In  the case 
of partial cavitation, the Joukowski condition and tangential outlet condition can be 
satisfied by the form of the error vector. The cavity-wake modelling problem is not 
extensively dealt with. It is shown, however, that  in order to obtain a satisfactory 
cavity lengthlcavitation number ratio, it is probably necessary to introduce a 
displacement thickness behind the near wake of the cavity which does not close on 
the body according to a separated flow scheme analagous to the wake, as introduced 
previously by Yagamuchi & Kato (1983). The method is shown to be capable, after 
a few minor modifications, of dealing with the case of bodies with a rounded rear 
edge. Even so, the advantage is essentially didactic as the problem of predicting the 
position of separation points is not treated. The problem of two cavities around 
axisymmetrical bodies has a more obvious practical interest. The nonlinear closure 
condition of each cavity is exactly satisfied by an iterative resolution scheme in 
which allowance is made for the presence of an axial gravity field. 

1. Introduction 
The tasks of designing hydraulic machines and predicting their performance have 

preoccupied engineers for many years, indeed since before the beginning of the 
nineteenth century. Today, thanks to the modern computer, it is possible to consider 
increasingly complex flow conditions without excessive schematization. This is the 
case, for example, in the design of marine propellers ; previously based on Prandtl’s 
lifting-line theory, the design now considers the surface-lifting method which is more 
suited to geometries of low aspect ratio. 

One of the most severe technical requirements imposed on a hydraulic machine is 
due to cavitation. As it develops, cavitation creates noise, vibration, metal erosion 
and, finally, a drop in machine performance. Much work has been done in past years 
to obtain a better understanding of the physical phenomenon of cavitation in order 
to predict and alleviate its effects on machine performance. Curiously enough, 
whereas calculations of flow in turbomachines or around propellers have for several 
years been based increasingly on numerical methods, modelling of cavitating flows 
has continued to develop, until quite recently, mainly through analytical methods. 
Could this be the price paid for the popularity of the techniques developed and 
proven by Wu (1956, 1959), Tulin (1953, 1964), Larock & Street (1967), Leehey 
(1973), etc., a t  a time when supercavitation held rich application possibilities. 
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The analytical calculation of cavitating flows is based on two techniques the 
small-perturbation theory proposed by Tulin, and the nonlinear theory that 
originated from work by Helmoltz, Kirchhoff and Levi-Civita. The analytical 
calculation of cavitating flows using conformal transformation comes up against two 
major difficulties : implementation of the nonlinear theory is difficult, and extension 
to three-dimensional flow is impossible outside the framework of perturbation 
methods. The most comprehensive analytical developments are probably those 
proposed by Furaya, whose nonlinear theory dealt successively with the case of a 
supercavitating section near a free surface (1975a), a supercavitating foil near a free 
surface (1975b) and a partially or fully cavitating cascade (1980). In  spite of the 
precautions taken, convergence of the solution is not always certain when the lower 
side of the foil is arbitrarily shaped. Moreover, the instabilities affecting the position 
of the cavity detachment point near the leading edge make problematical any 
procedure aimed at  predicting this position by matching with a boundary-layer 
calculation. 

Although there are only a small number of numerical cavitating-flow calculation 
methods, some of these methods date back to the 1960s. For example, Widnall(l966) 
treated the case of a supercavitating foil in unsteady flow using the surface-lifting 
method. In  this pioneering work, the cavity closure zone is not defined. In  1969, 
Nishiyama & Miyamoto treated the problem of a supercavitating foil placed under 
a free surface. Tsen & Guilbaud (1974) studied the effect of the plan shape of a super- 
ventilated foil from both experimental and theoretical standpoints. I n  1979, Verron 
extended Tsen & Guilbaud's method to the case of base-vented foils. In  this work, 
the plan shape of the cavity is calculated for non-zero cavitation numbers. The 
important case of partial cavitation was tackled a t  MIT by Golden, Uhlman, Jiang 
and Van Houten between 1975 and 1978. Application to the problem of propellers 
was accomplished by Chang-Sup in 1980. 

In  previous studies, boundary conditions have been linearized to varying degrees. 
In  the nonlinear theory, Yellone & Rowe (1981) treated the case of a base-vented foil 
near a free surface. The method developed by these authors can also be used to treat 
the case of supercavitating conditions, but the extrapolation to partially cavitating 
flows is not obvious. The numerical calculation of such flows in nonlinear theory is 
poorly represented. This problem is not as simple as i t  appears, especially when the 
submerged structure has a very small relative thickness. In  1975, Furness & Hutton, 
treated the case of a cavity in a two-dimensional convergent-divergent nozzle under 
unsteady flow conditions, according to a method that would be well suited to the 
calculation of thin structures. The method does not seem to have been applied to 
industrial situations (to the authors' knowledge). In  1977, Nishiyama & Ito and more 
recently Yamaguchi & Kato (1983) presented methods well suited to the case of foils 
having a large relative thickness. These methods have the drawback of not allowing 
adjustment of the ' overpressure zone ' that exists a t  the rear of the cavity, and they 
degenerate into extremely simplified schemes when the conditions become non- 
cavitating. 

The model presented here aims to be flexible, simple and adjustable: flexible to 
allow it to be used under a variety of conditions, simple so that extrapolations to 
unsteady or three-dimensional flows can be made, and adjustable so that i t  can be 
made to  fit experimental results. Increasingly complex situations will be illustrated 
by the following examples: partial cavitation on a thin foil, cavitation behind a 
rounded body, consideration of the gravity effect in the case of an axisymmetrical 
body, and simultaneous calculation of two cavities. 
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FIQURE 1 .  (a) Flow configuration. (b) View of tip cavity. 

2. Principle of the method 
2.1. Flow modelling 

The flow field around the foil represented schematically in figure 1 ( a )  includes several 
domains : 

~ domains I and 11, for which the approximation of the boundary layer remains 
valid, except a t  the common boundary between domains I1 and 111; 
- domain 111, bounded by a constant-pressure streamline ; 
- domain IV, corresponding to the near wake which is essentially rotational, two- 

- domain V, called the ultimate wake, corresponding to the diffusion of domain IV  

For simplicity consideration will be given to average steady flow conditions. 
Domains I and I1 can be modelled by displacement thicknesses bounded by a 

fictitious streamline connecting to the cavity boundary. It will be assumed herein 
that these domains have zero displacement thickness. By means of a boundary-layer 
calculation, it should be possible to correct the potential solution to take into account 
domains I and 11, and a t  the same time to calculate the position of their common 
boundary with domain I11 by referring, for example, to the ‘laminar separation’ 
criterion. In  the vicinity of points A ,  B (figure I b )  is not absolutely necessary to 
assume that the tangential outlet condition is satisfied. In other respects, this 
condition is not always justified from the physical standpoint. 

Modelling of domains IV and V creates more serious difficulties. At the present, 
time, there are not sufficiently accurate experimental data available to form the basis 
of a comprehensive study of the phenomena involved in these regions. Such results 
are probably not available because the numerical tools currently developed are still 

phase and turbulent ; 

in the potential Aow. 
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not effective in dealing with the information collected. Therefore this study will be 
limited to the potential problem and, in the context of a steady flow solution, domain 
IV is replaced by a displacement thickness connecting to the cavity boundary, and 
domain V is assumed to be in evanescence. The latter assumption is certainly very 
restrictive, as domain IV introduces a high level of turbulence and the coupling 
between domains IV and V is felt throughout the flow. 

In  what follows, domain IV is characterized by its length, A, chosen arbitrarily as 
input data, and by a recompression law given indirectly. 

2 .2 .  Resolution by the method of singularities 

From the various assumptions described in 52.1 above, the problem can be reduced 
to an integral formulation. I n  two dimensions, the velocity field is induced by a dual 
source and vorticity distribution according to equation (1) : 

where P is the velocity calculation point, M any point on the domain boundary, r the 
vector joining M and P ,  ds the contour element, (T and w the source and vorticity 
distributions, V, the velocity of the undisturbed flow, and k a unit vector normal to 
the flow plane. 

In  this equation, the integrals are considered according to Cauchy’s principal value 
when P tends towards S.  In  the analytical formulation, and depending on the nature 
of the boundary conditions, it is possible to choose arbitrarily either of the 
singularity distributions and to  calculate the other distribution from these boundary 
conditions. A single-valued solution is guaranteed, despite the initial indeterminate 
nature of the singularity distributions. 

The discretization of ( l ) ,  which leads to the classic ‘panel method’ technique 
described below, unfortunately destroys this property. For example, in this 
technique, the choice of a constant-intensity vorticity distribution gives rise to a 
systematic error in the lift calculation under subcavitating conditions. In  the case of 
a cavitating-flow calculation, this problem is compounded by another : the existence 
of different boundary conditions on the two sides of the foil. If the vorticity 
distribution on the wetted side and the source distribution on the cavity are chosen 
arbitrarily as input data, an acute problem of connection in the transition zone 
between the different domains is raised. 

For these two reasons, it is necessary to calculate all the singularity distributions 
according to an objective criterion, rather than choosing part of the distribution 
arbitrarily. According to ideas put forward by Hunt & Semple (1980) the calculation 
can be organized around the search for the minimal error associated with a given 
discretization. It is then essential to describe the body by panels reflecting the 
geometry as accurately as possible. In  what follows, i t  will be assumed that this 
problem is solved. 

The influence of singularities in the vicinity of the observation point can be 
summarized by the following equations, up to  second order: 

V J P )  = ( 2x +- ~ $ ) w ( P ) t + I A s w ’ ( P ) n ,  (3) 



A nother approach in m.ode1ling cavitating jlows 56 1 

where V, and V, are the source and vorticity components of the disturbance speed, 
2As is the length taken into account in the vicinity of point P, R(P) the radius of 
curvature in P ,  n the normal unit vector and t the tangential unit vector oriented by 
the curvilinear abscissa, and where the prime expresses the derivative with respect 
to the curvilinear abscissa. The subscripts u and w relate to sources and vortices 
respectively. 

Equations (2) and (3) show that there are two velocity-generation modes. One is 
proportional to the intensity of singularities, while the other is proportional t o  their 
gradient, The most economical way of discretizing ( 1 )  involves discretizing the 
geometry by straight-line segments and considering the distributions to be constant 
on these domains. This procedure, which neglects local effects due to the gradients, 
is acceptable if the couple (g, w )  is chosen in such a manner that the following 
conditions are obtained : 

As u’(P) and As w’(P) minimum. (4) 

Such a formulation does not promote either of the two singularity distributions 
and thus does not introduce any priority for the type of boundary conditions 
necessary for resolution of the problem. 

The numerical evaluation of (4) and their minimization in a weighted least-squares 
sense involves finding a minimum of a quadratic function of the values of the 
singularities. The overall problem can be written as follows : 

boundary conditions HX = 1, (5a )  

minimization criterion e = E x ;  leI2 minimum. ( 5 6 )  

In order to solve the problem of cavitating flow, the shape of the cavity must be 
calculated by successive iterations. The velocity field calculated by the above 
iteration is used so that the line on which the pressure is given becomes a streamline. 
Such a line (if i t  exists) is the trace of the points such that 

d P x  V = O .  (6) 

By reference to figure 2 ,  the unknown normal distance h is defined by 

P = M +  h(s)  n(s).  (7) 

By substituting (7) in (6), the value of h is defined by a linear differential equation 
of the first order : 

dh h 
ds R Vst --- V.n = V - n ,  

where V is the velocity of the point M ,  and R is the radius of curvature a t  point M .  
This equation is solved numerically by first-order discretization, thus enabling the 
recurrence to be established for defining the new points of the boundary. 

A cavity is defined by two parameters : its length 1 and its pressure p,. Within the 
context of the hypotheses considered, there are at least three ways of expressing the 
closure condition : 

V-nds = 0, h(sE) = 0, (9a-c) is, ads = o, s,,., 
where s’ is the unknown part of the boundary (DE) ,  (see figure 3), h is the normal 
position of the cavity, defined by (8) and sE represents the curvilinear abscissa of the 
end of the zone of unknown geometry. 
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FIGURE 2. Unknown-geometry relaxation procedure (equation (8)). 
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FIGURE 3. Flow model : D to  C ,  cavity ; C to E ,  near wake. 

Equation ( 9 a )  indicates that the flow rate through the boundary is zero, while ( 9 b )  
expresses the same condition written for that part of the boundary with unknown 
geometry, allowing the independent closure of several cavities (the condition (9 a )  
being general). Equation (9c)  is a geometrical alternative and expresses the 
reattachment of the streamline on the foil to the rear of zone IV. This last condition 
improves the convergence of the rear-cavity calculations in axisymmetrical 
geometry. 

For the solution to the analytical problem, conditions (9a-c)  are strictly equivalent 
to  a closure condition applied to the cavity plus wake boundary. Owing to the 
relaxation procedure applied to this boundary and to the associated discretization 
errors, this equivalence is not respected for the numerical solution, especially in cases 
where conditions are nonlinear. 

3. Partial cavitation around a thin foil 
3.1. Formulation 

Since the shape of the cavity is not known, the calculation is initiated from a 
geometry corresponding to the foil section. On the non-wetted side of the foil, the 
surface impermeability conditions are expressed by the following classic formula : 

(10) 

In each iteration of the cavity calculation, the tangential component of the 
velocity is assumed to be constant. Since the associated parameter is the cavity 
pressure, Bernoulli’s equation is used to calculate the cavitation number : 

V.n = 0 onETf and LP-. 
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using the expression 
K=-- (Vto)* 1, 

v m  

where I:, is an unknown constant given by 

Vst  = V,, on DC (12) 

In  these expressions, p ,  is the reference pressure, p ,  the cavity pressure, and p the 
fluid density. 

On the cavity, the velocity component normal to the cavity surface will be zero 
only a t  the convergence of the iterative process. The connecting condition related to 
the cavity-foil transition zone is expressed by (figure 3) 

The length of this zone ( A )  and the function f ( s )  are chosen arbitrarily as input data. 
In the absence of any accurate data concerning the wake structure, the choice of the 
function f ( s )  can be restricted to the expression 

where v is a real positive constant. At convergence, V.n = 0 on the wake boundary. 
It should be noted that the variation in pressure in this zone can also be imposed 
directly by 

(15) 

To these boundary conditions should be added the Joukowski condition which may 
be written as follows : 

V.  t = I.',,f(s) + V .  t ( C )  (1 - f ( s ) )  on CE. 

v. t ( T + )  + v. t ( F )  = 0 (16) 

and one of the forms of the cavity closure condition (cf. (9)). 

and 2n + 1 unknowns : the 2n singularities and the cavitation number K. 

condition (4) : 

If the foil is discretized into n panels, there are n+ 2 linear conditions of type ( 5 a ) ,  

The problem (5) can be closed by the choice of vector e derived directly from the 

e = (r1-crn, v2-gl ,..., un-,-un, w l + w n ,  w 2 - w 1  ,..., wn-,-wn). (17) 

The component (CT, - gn) tends to impose a symmetrical behaviour of the sources on 
the foil, thereby guaranteeing satisfactory lower sidelupper side decoupling. 

In order to prevent non-return of the fluid a t  the trailing edge, the component 
(wl + w n )  must be minimized. This condition is practically ensured by (16). In  general, 
minimization of the vector (17) is sufficient for implicitly ensuring the tangential 
outlet condition but, when necessary, an explicit tangential outlet condition can be 
added. 

In  order to solve problem ( 5 ) ,  n+ 2 unknowns are chosen, called 'main unknowns', 
that  are grouped together in a single vector x,. A possible choice is 

XI = ( ~ 1 3  gz> . . . , g n >  Vto, ~ 1 ) .  (18) 
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Input  data  Calcbulated data  
-. . 

Cavity Near wake Cavity General 

Detachment point Length h Geometry Velocity field C,, C, 
Length 1 11 exponent of A law Cavitation number K 

(cf. (1.1)) 
TABLE 1 .  Description of input parameters and calculated parameters 

The remaining unknowns (secondary unknowns) are grouped toget'her in another 
vector, x,: 

As introduced by Hunt) & Semple (1980) problem (5) can then be written as 
follows : 

x, = ( W , ,  0 3 ,  . . . , W  n). (19) 

(20) I AX, + Bx, = 1, 
e = Fx, + Gx, ; lei2 minimum. 

The solution is given by elimination and leads to 

(A + CQ-lP) X, = L, 

P =  (A-lC)FF-GF; Q = GG-(A-lC)FG, 
X, = QP'Px,, ) (21) 

where a tilde denot'es transposition. 
By substitut,ing values of the unknowns in ( 1 )  and relaxing the free boundary as 

previously described, the velocity can be calculated. Three iterations are required in 
order to solve the problem with reasonable accuracy. I n  the calculations presented 
here, the limit of five iterations was never exceeded. 

Table 1 summarizes the input parameters of the problem and gives the parameters 
accessible by the model. The effect of the various parameters on the results will be 
discussed below. 

3.2. Results 

The model was first tested from the theoretical standpoint with a NACA 16206 foil 
geometry set a t  a 3" angle of attack in an infinite flow section. The position of the 
point representing the rear end of the cavity was fixed systematically a t  half the 
chord and, for the first calculations presented hereinafter, the near-wake length h 
was fixed at  0.3. Figure 4(a) illustrates the shape of the cavity obtained for a 
detachment point located a t  the limit of appearance of low-pressure zone upstream 
of the cavity. When positioned any further downstream, this low-pressure zone is 
established. The pressure distribution associated with this cavity is shown on the 
inset in figure 4 ( a ) .  Figure 4 ( b )  shows the singularity distributions obtained in these 
conditions. It is worth noting that vorbicity and sources vary rapidly near the 
leading edge. On the cavity, however, vorticity varies slowly because a consbant- 
tangential-velocity condition is imposed on this linc. As the sources do not introduce 
any discontinuity in tangential velocity - this discontinuity being produced by 
vorticity alone ~ it  is found that the minimization condition correctly fulfils itjs role 
by creating or absorbing vorticity in places where this is physically necessary, i.e. in 
the high-cxwvature zone of the leading edge and in the near wake of the cavity. The 
conditions around the trailing edge were also checked to ensure that the sources had 
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a symmetrical behaviour and the vorticities an antisymmetrical beha\ 1 lour, . 
guaranteeing establishment of the Joukowski condition. Finally, in the transition 
zones. especially at the rear of the cavity, the appearance of small oscillations was 
noted although these do not affect the lower side. 

The geometry represented on figure 4 is probably not very realistic because of the 
choice of dctachment-point position, located too far upstream, resulting in excessive 
swelling of the cavity. So the influence of the detachment-point position on cavity 
geometry and pressure distribution was studied, the other parameters remaining 
unchanged. Figure 5 shows the shape of the cavity for two detachment-point 
positions located respectively at x = 0.03 and 0.10. It can be seen that the cavity 
becomes flatter and that the cavity pressure increases when the detachment point is 
moved towards the rear of the foil. This behaviour is accompanied by the appearance 
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FIGURE 5 .  Influence of the choice of cavity detachment point on geometry and pressure 
distribution; zdetach = 0.03 and 0.1. (a )  Geometry; ( b )  pressure distribution. 

of a very large high-speed'zone upstream of the cavity (cf. figure 5 b )  whereas the 
tangential outlet condition is no longer totally satisfied. The existence of an 
' underpressure zone ' in front of the cavity naturally leads to lifting of the first panel 
surface which, in certain cases, is accompanied by the appearance of a point of 
inflexion. This is clearly illustrated on figure 6. In  this case, a cavity was calculated 
for a detachment point located a t  x = 0.03 assuming the foil to have an angle of 
attack of 6". Here, the outlet angle is not zero but equal to 2'50'. Immediately after 
the first cavity panel, the existence of a point of inflexion is noted. The previous 
results are consistent with the theory, even if, from the physical standpoint, the 
cavities represented on figures 5 and 6 are probably unstable : the boundary layer will 
certainly not be able to withstand the high compression condition created between 
the maximum high-speed zone and the cavity. The pressure distribution and shape 
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FIGURE 6. Geometry a = 6"; xdetach = 0.03. 

of associated cavities were then examined in greater detail for detachment points 
located near the leading edge. 

Figure 7 ( a )  shows the shape of the cavities obtained in this zone. The choice of a 
detachment point slightly downstream of point No. 28 gives rise to slight overspeed 
in front of the cavity. On condition that it remains restricted, as shown on figure 7 ( b ) ,  
this overspeed could be representative of real conditions, as the fluid is capable of 
withstanding tensions over short distances. However, the recompression of the 
boundary layer causes laminar separation and it is precisely the existence of this 
separation that can be used as a criterion for finding the cavity equilibrium position 
(see Franc & Michel 1985). The choice of a detachment point upstream of point No. 
29 leads to the appearance of a high pressure gradient in the immediate vicinity of 
the leading edge. At the same time, the cavity enters the foil, which is obviously 
unrealis tic behaviour . 

The slight flexibility of the model in the vicinity of the detachment point is 
perhaps a drawback to finding the position of this point by coupling with a local 
boundary-layer calculation. If this were to be so, an explicit tangential outlet 
condition could be added without difficulty. On the other hand, in its imposed 
implicit form, the tangential outlet condition can be used as a criterion for finding the 
position of the detachment point. In  what follows, unless stated to  the contrary, i t  
is this simplified criterion that has been used. 

Table 2 indicates the effect of the choice of cavity detachment point on the lift 
coefficient and cavitation number (see figures 7 a and 7 b )  : 

P-Po2 c, = - 
kPVz, 

Figure 8 shows, for the same foil and same operating conditions, the effect of wake 
length on the pressure distribution downstream of the cavity. Here, the wake has 
been described by a quadratic connecting law of the normal velocity (see (13) and 
(14), v = 2). The length of the wake has a direct bearing on pressure recovery. For 
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FIGURE 7. Influence of the choice of cavity detachment point on geometry and pressure 
distribution near the leading edge. ( a )  Shape of the cavities, ( b )  pressure distribution. 

Detachment point C,  C,  cavity = - K  
25 0.57 1 -0.71 1 
26 0.576 -0.733 
27 0.580 -0.750 
28 0.583 -0.761 
29 0.586 -0.766 
30 0.581 -0.760 

TABLE 2 Sensitivity of lift coefficient and non-dimensional pressure in the cavity to  the choice 
of detarhment point 
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FIGURE 8. Influence of the near-wake length on geometry and pressure distribution on the rear 
part of the foil. 

short wakes, pressure recovery is high while for long wakes, recovery can disappear. 
Table 3 shows the effect of wake length on the lift coefficient and cavity pressure. 

The effect of the exponent Y of the connecting law (see (14)) is similar to  that of the 
wake length. For v > 2,  pressure recovery is high, which corresponds to a shortening 
of wake length. In  what follows, a v-value of 2 has been chosen systematically and 
thc wake length h was again fixed at 0.3. 

The results of the present method were compared with the analytical experiments 
and calculations presented by Uhlman & Jiang (1977) of MIT. The foil tested has a 
plane lower side, a circular upper side and a 6 % relative thickness. To eliminate the 
geometrical singularity of the leading edge, this edge was rounded with a radius of 
curvature relative to the chord of r / c  = 0.001. Figures 9 and 10 show the excellent 
agreement between the results concerning the cavity lengths and the cavitation 
numbers. It is worth noting that the evolution of the Z(K) law in our model is 
identical to that of the analytical theories presented in comparison. This will be 
discussed later. 
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A,  near-wake length 
relative to the chord C, C, cavity = - K  

0.07 0.563 -0.752 
0.10 0.572 -0.762 
0.16 0.578 -0.763 
0.23 0.583 -0.761 
0.30 0.590 -0.759 
0.36 0.595 -0.757 
0.40 0.600 -0.756 

TABLE 3. Sensitivity of lift coefficient and non-dimensional pressure in the cavity to 
wake length 

a l K  

FIGURE 9. Plano-convex section, comparison with MIT results (Uhlman & Jiang 1977) : cavity 
length vs. u / K  for t / c  = 0.06, u = 2". 

A second comparison of our model was made with the experimental data obtained 
with a NACA 16012 by Franc. Despite the fact that our calculations do not make 
allowance for wall effects, there is good agreement between the NACA results and our 
model for short cavities (Z/c < 0.4) (see figure 11) .  

The difference between the calculated pressure and the measured pressure noted 
for long cavities invites the following comments. Figures 9 and 10 show that, over a 
wide range of variation, there are two possible cavity lengths for a given pressure 
value. To make the flow reattach to the back of the foil is globally equivalent to an 
overestimation of the flow circulation around the foil and thus to a corresponding 
overestimation of the velocity a t  the cavity boundary and of the cavitation number. 
The analytical results given in the comparisons with MIT tests assume flow 
reattachment and show the same behaviour as our model. This confirms that, for 
large cavity lengths, the hypothesis of flow reattachment on the foil downstream of 
the cavity is not realistic. 

For the long cavities. a cavity model was then developed in which the near wake 
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FIGURE 10. Plano-convex section, comparison with MIT results (Uhlman & Jiang 1977) : cavity 
length us. u / K  for t / c  = 0.06, u = 4'. 
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FIGURE 1 1 .  Comparison with NACA 16012. 

extends downstream of the trailing edge. The results of this model are given here 
purely for explanatory purposes as the wake modelling method used is in fact too 
simplified to allow valid quantitative analysis. For cavity lengths greater than the 
chord, a supercavitation model similar to that presented in $4.2 was used. The results 
are given in figure 12. Worthy of note is the analogy in behaviour between these three 
models and the tests. Using the models described here, the variations in pressure can 
be obtained qualitatively and satisfactorily by comparison with experimental 
results. 

19 FL.M 195 
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FIGLTRE 12. l'ariation of cavitation nunihrr K with cavity length. 

4. Model extensions 
4.1. Cattitation be,hiwd a rounded body 

In this particular case, t,he calculation concerns flow around foil sections with a 
rounded trailing edge as might exist for hydraulic machines. Prediction of the lift of 
such bodies is greatly influenced by the manner in which the Joukowski condition is 
dealt with and the strictly potential calculation leads to an unrealistic description of 
the flow in the vicinity of the trailing edge. In  order to take into account the 
existence of a wake behind the body, the recirculation zone behind the section is 
modelled as a cavity. This is acceptable insofar as a wake can be considered, 
approximately, to be a constant-pressure zone. 

In order to demonstrate the flexibility of the met,hod described in $3, and notably 
the fact that  the number of boundary conditions is not limited to the number of 
panels, the wake is modelled in the form of two cavity boundaries followed by a 
stagnation point. 

The section used for this study is a tip section of a Kaplan turbine of 3 % maximum 
t'hickness, ending in a small circle at t'he brailing edge, the circle diameter being equal 
to 5 x lop3 chord. On such a body, the position of the cavity detachment point is 
determined without ambiguity on the lower side by the change in slope. It is assumed 
here that the separation point on the upper side is also located at the point where the 
curvature becomes discontinuous and the displacement thicknesses are ignored on 
the upper and lower sides of the foil. The initial shape of the cavity is made up of a 
first panel exbending beyond bhe body, and then a straight line parallel to the 
velocity to infinity. 

The boundary conditions are as follows : for the wetted part, the impermeability 
condition, (10); for the cavity, the const,ant-pressure condition, (1 1). Given the initial 
shape of the cavity, a tangential output condition of the cavity has been added on 
the first cavity panel. This is achieved by simultaneously imposing the two 
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FIGURE 13. Trailing-edge cavity. Influence of t,he pressure on C,,. 

conditions (10) and (1  1)  on this panel. Equation (9a )  has been used to close the 
cavity. Finally, the stagnation point (M,) is described by the following conditions : 

} (24) 
v; V(M,)  = 0, 
V, x V ( M , ) .  k = 0 ( k  perpendicular to the flow plane). 

The stagnation point is defined as the middle point between the ends of the cavity. 
For convergence requirements, the free boundary relaxation was under-relaxed, and 
( 7 )  is replaced by 

P = M+52 h(s) n ( s ) ,  (35) 

where 52 is an under-relaxation coefficient between 0.5 and 0.8 in the cases treated. 
The need for under-relaxation is related essentially to the instability derived from 
the contradiction between the fact that a value of V = 0 is imposed a t  the point 
M,, whereas V = constant (=I= 0) on the cavity. 

The problem (5) associated with the flow resolution contains 2n+ 1 unknowns (as 
in $3)  and there are n+5 linear constraints. It is resolved by choosing the error 
vector deduced from (17)  by eliminating the components ( g l - r n )  and ( w I + w n )  
since, in such case, the implicit Joukowski condition is irrelevant. 

Figure 13 illustrates the rear of the section studied with a set of several cavities of 
different lengths. For the cavity lengths explored, the cavitation number decreases 
rapidly whereas the lift coefficient is not affected to any great extent (less than 
k0.5 % by cavity length). Consequently, it is justifiable to consider that the average 
value of lift, 0.219 in this case, is a reasonable estimate of the correct value which is 
practically independent of the wake length chosen as input data, for the position of 
the detachment point considered on the upper side. This result justifies the simple 
method often used which consists in opening the foil section to the rear by 
eliminating the rounded part,, and leaving the sources to discharge into the flow : the 

10-2 
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Iteration no. 1 Iteration no. 4 

result does not depend on the length of the wake. There nevertheless remains the 
problem of determining the exact position of the detachment point on the upper 
side. 

Figure 14 shows the change in velocity field during the cavity relaxation 
procedure, in the vicinity of a cavity formed behind a parabolic section of 10% 
relative thickness. It is worth noting the influence of the stagnation point which 
imposes a zero velocity inside the domain assumed to represent either a wake or a 
cavity. Such behaviour is unrealistic, but i t  is clear that the model does not pretend 
to describe what happens a t  the rear of the cavity. 

By combining a rear-cavitation model with the partial-cavitation model described 
in $3, it is possible to take into account two cavities simultaneously. This type of flow 
is illustrated here with respect to the geometry of axisymmetrical bodies. In  such a 
case, given the axial symmetry, it is possible to ignore the assumed existence of a 
stagnation point behind the rear cavity. A partial cavibation-type closure condition 
is more convenient. 

4.2. Axisymmetrical body with gravity effect (one or two cavities) 
Cavitating flow around an axisymmetrical body is generally a three-dimensional 
problem. To extend our model to this problem without excessive modifications, the 
case is limited to zero angles of attack, and i t  is assumed that the symmetry axis of 
the body is identical to the direction of the gravity effect. Under these conditions, 
resolution of the problem is reduced to a calculation with two spatial variables on a 
meridian of the body and cavity, which must be a meridian of revolution. The flow 
speed is expressed in terms of the singularities by the following equation: 

where u and w are the surface densities of sources and vorticities, dS the surface 
element on the body, k the unit vector in the azimuthal direction with P ,  M and r 
having the same meanings as in ( 1 ) .  

Equation (26) is discretized in the same manner as a two-dimensional equation: 
the surface meridian is divided into discrete straight segments and the singularity 
distributions are assumed to be constant on the truncated cones defined by the 
surface. Two integrations are required in order to calculate the influence coefficients. 
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The first integration is possible analytically, giving rise to complete elliptical 
integrals, while the second is numerical, based on an analytical treatment according 
to the classic method used previously by Hess & Smith (1967). 

In  order to take into account the presence of two cavities a t  the same time, the 
wake model used for partial cavitation will be extended to the base cavity. In  
addition, the (9c)  form of the cavity closure equation must be used. 

When allowance is made for the gravity effect, the simplicity of the constant- 
pressure condition (1  1) disappears. Considers the application of the Bernoulli relation 
between the cavity detachment point (D) and a standard point : 

where x is the abscissa relative to the front of the body and L the body length. 

to the tangent velocity at the detachment point and is expressed as follows : 
The constant pressure condition on the cavity then becomes nonlinear in relation 

F2 = V2,/2gL, 
where V, is the velocity a t  the detachment point and F the Froude number based on 
the length L of the body. 

In  form, (28) is not very different from (1  1). Since problem resolution is iterative, 
the corrective term of (28)  can be evaluated on the first iteration by assuming V, is 
equal to V,. On subsequent iterations, the corrective term is evaluated with the 
tangential velocity calculated from the previous iteration. In  this way, the condition 
(28 )  becomes linear with respect to the velocity a t  the detachment point V,: 

Vat = V,Ic(x), (29) 

where k(x) is a known function of the abscissa, of order one. 
On presenting the wake-cavity model in $4.1, the usefulness of under-relaxing the 

calculation of the position of the boundary was indicated. In  the present case, the 
boundary conditions (28) and the geometry must be adjusted simultaneously. 
Consequently, to be sure of satisfactory convergence of the iterative process, the 
convergence speed should be controlled by a less coarse means. The closure condition 
is adjusted progressively. 

Equation (Sc), or more exactly its adaptation to the base-cavity problem, can be 
used for fine adjustment of convergence speed. This equation is strictly expressed for 
the base cavity as follows: 

where h has the same meaning as in (8) and y is the rear ordinate. 

h(E)  = -y(EL (30) 

The closure condition effectively applied is expressed by 

h(E)  = - Q y ( E ) ,  (31) 

where 52 is a coefficient between 0 and 1. The need to adjust the closure condition 
progressively is related to  the fact that  the problem depends on two unknowns : one 
concerning the geometry and the other concerning the function to be distributed on 
this geometry. The procedure amounts to allowing the function to adjust correctly 
before too great a deformation of the geometry occurs. 

Thus, if SZ is equal to 1, the cavity closes a t  the first iteration without condition 
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(28) being satisfied with sufficient accuracy. If 52 is equal to zero, a simple 
redistribution of the points of the boundary around the initial position takes place 
and (28) can be applicd to obtain a much better estimate of the cavity pressure. In 
cases where the gravity effect is very high (E' of the order of, or less than, one, and 
cavity length of the same order as that  of the body), a value of 52 = 0 is imposed on 
the first iteration, followed by a value between 0.6 and 0.8 for subsequent iterations. 
Despite its simplicity, (30) is nonlinear and must be slightly modified. Equation (8) 
is equivalent to 

H .  Cemonnier and A .  Rowe 

The tangential velocity is evaluated according to the same rules as for (28). The 
cavity is initially cylindrical and, as such, the curvature of the meridian is zero. I n  
subsequent iterations, it is reasonable to assume that the solution is close and tvt, 
as a result, the deflection h of the cavity is much smaller than the radius of curvature 
of the meridian. The equation for closure of the under-relaxed cavity can then be 
written as follows : 

h(E) = 1::; ds = -Qy(E). (33 )  

The boundary conditions are therefore summarized by the application of (11) to 
the wetted part of the body, (28) to the cavity and (13) to the cavity wake. This set 
of equations is complemented by (33). To complete definition of the problem (5), the 
vector chosen to be minimized is 

e = ((T, - ( T ~ ,  . . . unPl, w1 - w 2 ,  . . . , wnP1 - w,, u,), (34) 

where 1 and n represent respectively the number of the last control point on the wake 
(point E) and the first control point of the body. This form is the natural restriction 
of (17)  to the axisymmetrical geometries. 

Again, it is interesting to note that it is not necessary to impose the tangential 
outlet condition on either side of the cavity detachment point. Continuity is obtained 
naturally by the model. Figure 15 shows a series of cavities behind an elongated 
section (ellipse-cylinder). The effect of gravity is shown by the existence of 
overpressure cavities (K < 0). These cavities adopt a bulging shape with diameter 
exceeding the middle diameter of the body. 

Figure 16 illustrates a typical pressure distribution on the meridian of the body. 
If V, = V , ,  then C, is reduced to its hydrostatic component, equivalent to the 
pressure in the absence of a body (straight line). The parts of the curve below the 
straight line are equivalent to overspeed conditions. Consequently, there is a risk of 
cavitation in these zones. The calculations needed five iterations and the pressure 
plateau in the cavity bears witness to  the satisfactory convergence of the calculation. 
Figure 17 gives the variation in cavity pressure as a function of cavity length (with 
Froude number as a parameter, see definition in (28). 

It is possible to calculate two cavities on the body simultaneously. The rear cavity 
may be caused by the existence of gas, of given pressure, and the front cavity may 
be caused by fluid acceleration (notably in the case of a break in slope). As before, 
the two cavity lengths are given ( I ,  and I,) as well as their wake lengths, whereby two 
different tangential velocities a t  the two detachment points are available. It is 
necessary to apply the condition (28) with the corresponding tangential velocities 
V,, and V,, and to have two cavity closure equations. Equation (96) is used for the 
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FIGURE 17. Variation in cavity pressure in relation to  cavity length and Froude number. 
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FIGURE 18. Typical pressure distribution with two cavities. Exp. (NEYRTEC). 1, axisymmetric 
body : impermeability condition ; 2, cavity : constant pressure ; 3, near wake : displacement 
thickness. C ,  local = P -  Phydrostalic/~pV2,. 

front cavity and (31) for the rear cavity. It is then relatively easy to adjust the two 
cavity lengths to obtain the desired pressures. Figure 18 shows a typical example of 
such a calculation. 

5. Conclusions 
The Minimization Process Panel Method (MPPM) proves to be particularly well 

suited to describing cavitating flows in complex situations. Realistic outlet conditions 
with a low discretization error can be obtained by minimizing the gradients. This is 
particularly interesting for thin structures. Since the number of boundary conditions 
to be satisfied does not depend on the number of control points, the method can be 
adapted to a variety of situations. This feature, coupled with the incorporation of a 
far wake, would give open semi-empirical models (fixed I, K law). The recompression 
law can be adjusted through the near wake whereas the dissipative effects could be 
taken into account by the far wake, not introduced in the present study. By using 
a geometric closure condition with an exact numerical definition for the discrete 
problem, several cavities can be taken into account simultaneously, even when 
gravity aggravates the nonlinearity of the problem. By coupling this method with a 
boundary-layer calculation, it would be possible to calculate the position of the 
cavity detachment point on the basis of the laminar-separation criterion. There are 
no theoretical difficulties in extending the method to three-dimensional or unsteady 
flow conditions. The most urgent work to be carried out involves determining how 
to choose the data corresponding to the near and far wakes so as to match theoretical 
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results with experimental results. Such work cannot be validly carried out without 
proven data concerning the structure of the wake behind the cavity. At the present 
time, more extensive data are needed in this respect. 
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